
State Chart Visualization of the Control Flow within an
ACT-R/PM User Model

Leon Urbas
Technische Universität Berlin

Center of Human-Machine Systems
Jebensstr.1, Sekr J2-2, D-10623

Berlin
++49 (30) 314-72007

urbas@zmms.tu-berlin.de

Ljudmilla Nekrasova
Technische Universität Berlin

Center of Human-Machine Systems

lne@zmms.tu-berlin.de

Sandro Leuchter
Fraunhofer IITB

Fraunhoferstr. 1, D-76131 Karlsruhe

+49 (721) 60 91-424

sandro.leuchter@iitb.fraunhofer.
de

ABSTRACT
We present a novel visualization for ACT-R/PM models of
cognitive processes to support the model development. Because
the underlying production system paradigm does not specify an
explicit flow of control, it is rather difficult to grasp the structure
of this kind of user models. Therefore, we developed an algorithm
that analyzes the interdependencies of ACT-R/PM productions by
resembling the main parts of the matching process of the
production cycle. The algorithm produces a graph with nodes as
specifications of the state of the declarative memory and edges as
productions which are applicable in these states. States are
generalized to reduce the complexity of the control flow. The
graph is transformed into a state-chart like visual representation.
Goal oriented behavior with sub-goaling is considered with sub-
graphs. The algorithm is implemented as a plug-in for the
integrated development environment eclipse.

Categories and Subject Descriptors
D.2.2, [Design Tools and Techniques]

General Terms
Algorithms, Documentation, Economics, Human Factors,
Languages.

Keywords
Cognitive User Modeling. Visualization of Flow Control, State
Chart

1. INTRODUCTION
ACT-R [2-3,5-6] is a cognitive architecture and a programming
environment for user models. These models describe the users’
cognitive structures and processes at a fairly atomic level. An
ACT-R user model consists of a set of production rules and the
specification of initial declarative memory elements organized in
a semantic network. In each cycle of the production system, the

condition part of all production rules is tested against the current
state of the active declarative memory elements. Then one of the
matching rules is selected by a conflict resolution algorithm
which incorporates a network of sub-symbolic measures. Finally,
the action part of the selected rule is executed to modify content
and activity of declarative memory elements.

ACT-R not only implements a theory of human associative
memory but provides the modeler with detailed mechanisms for
perception and motor action. The human mind is abstracted as a
modular system. Central executive is realized as a production
system core that interacts with perception, motor action, memory
and other subsystems via buffers. These buffers implement laws
and restrictions of data retrieval and access between the central
production system and the modules. The authors of the latest
version of ACT-R [3] are convinced that a mapping of some
elements of the architecture to certain cortical regions like
dorsolateral and ventrolateral prefrontal cortex (DLPFC, VLPFC)
or basal ganglia is possible (Figure 1).

The specification of the cognitive architecture imposes severe
constraints on how to model user behavior. From an engineering
point of view, these constraints are even supporting, because of
the guidance they might give to the modeler. Therefore we think
that it is more effective and efficient to use cognitive architectures
than general purpose/AI languages like Prolog or cognitive
toolboxes like COGENT [7].

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Productions
(Basal Ganglia)

Retrieval Buffer
(VLPFC)

Goal Buffer
(DLPFC)

Manual Buffer
(Motor)

Visual Buffer
(Parietal)

Declarative Module
(Temporal/Hippocampus)

Intentional module
(not identified)

Visual Module
(Occipital/Parietal)

Manual Module
(Motor/Cerebellum)

Task Enviroment

Figure 1. Modular software architecture of the cognitive
architecture ACT-R (adapted from [3]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Urbas, L., Nekrasova, L. & Leuchter, S. (2005). State Chart Visualization of the Control Flow within an
ACT-R/PM User Model. In A. Dix & A. Dittmar (Hrsg.) 4th International Workshop on TAsk MOdels

and DIAgrams for user interface desgin TAMODIA 2005, Danzig (S. 43-48). New York: ACM.
http://www.safety-critical.de/doc/tamodia2005.pdf

Despite of its very fine-granular description of users’ cognitive
processes, ACT-R/PM has been applied in different HCI task
domains, e.g. cell phone menu design [1], car driving [12], air
traffic control [11], flight management [13], and process control
in chemical plants [14].

However, ACT-R/PM is not yet an industrial engineering tool to
efficiently describe goal-oriented behavior of users in human-
machine-interaction. One reason is, that the underlying production
system paradigm does not specify an explicit flow of control (i.e.
function application in the functional or method sending in the
object-oriented programming paradigm). A conflict resolution
algorithm decides at run-time which one of all the possible
production rules should actually fire. The purpose of this scheme
is to handle program modifications during runtime, to increase
robustness to program changes by providing modularity and
independence of program elements. The drawback of this
programming paradigm shows up in program development
(modeling, testing, debugging, and sharing). The lack of explicit
representation of control flow makes it rather hard to get familiar
with someone else’s (including myself after a few days) program.
In our opinion, the main key to understanding a user model is the
possible sequence of productions.

2. CONTROL FLOW IN PRODUCTION
SYSTEMS
A program is a sequence of instructions. Normally the sequence
of program instructions (e.g. in a file) is not the same as the
observable sequence of instruction processing. The processing
sequence is the instantiation of a program instruction sequence. It
results from the control flow within the program. In procedural
languages the sequence of instructions is explicitly defined by the
modeler at programming time. Instructions are normally executed
in the order they appear. Control flow statements change this
sequential flow of control and allow to execute blocks of
statements conditionally (if-else, switch-case) or repeatedly
(while, do-while, for). Further language elements specify
branching (break, continue, label, goto, subroutine/function-calls,
return) and exception handling (try-catch).
Despite of all these high-level statements, programs can be
reduced to three basic elements instruction statement, goto-
statement, and conditional.
All other cases can be represented as instruction sequences and
conditional constructs. Branching to subroutines can be
represented as goto-statements, iteration control is the
combination of conditional, instruction sequence, and goto-
statement.
Thus a program can be represented as a graph with instructions as
nodes. Directed edges connect an instruction with its next
possible successors. In this notation, a program instantiation is a
sequence of nodes that describes a way through the graph from
the start instruction to a stop instruction via the edges.
In production systems the sequence of instructions, that is the
sequence of production instantiation applications, is not stated
explicitly (Figure 2b) but a result of working memory state and
conflict resolution algorithm. Only in well defined static problem
solving domains one could just record the sequence of production
instantiation applications during run-time and analyze this log
then after. However, at least in the human-machine interaction

domain, the program instantiation depends on externally
perceived information. Furthermore, most cognitive architectures
utilize stochastic noise at some point of model execution. It is
obvious, that visualizing a sequence of instruction processing as
shown in Figure 2c can not provide the necessary information to
match the description of the production system model (Figure 2b)
with the observation. In fact, to serve this purpose one has to
derive and display the program graph. Here nodes describe
distinguishable states of the system (as defined by the condition
part of the productions or the state variables of a procedural
language), the directed edges depict possible transformation (by
applying the action part of an applicable production) to another
distinguishable state of memory.

Figure 2. Different Models of a simple counting example

program as (a) procedural model, (b) rulebased model, (c)
Instruction Processing Graph, (d) Program State Graph

3. EXAMPLE
This section illustrates the basics of the visualization with a
simple model of mental addition. The goal of the model, which
was taken from the ACT-R 5.0 Tutorial Unit 1 at http://act-
r.psy.cmu.edu/tutorials/, is to add two small numbers. These
Numbers are given in arg1 and arg2, the result must be smaller
than 11. Addition is implemented as a counting process. That is,
the algorithm starts the computation with arg1 and increments this
by 1 for arg2 times. The number of times the increment was
executed is maintained in the variable count.
The structure of the addition-as-counting model is quite simple.
The model assumes that the user has a stable representation of the
order of numbers. Thus, the initial working memory consists of 10
facts that represent the successors of numbers 0 to 9. The goal
itself has four named slots, i.e. name-value pairs. The slots arg1
and arg2 contain the addends, sum represents the result of the
addition, and count maintains a counter. The procedure is
implemented with four productions, all of them manipulate the
same goal, sub-goaling is not necessary.

Initialize-Addition: This production can be applied if sum is nil,
that is no value has yet been assigned to this variable. The action
part of this production sets the sum slot of the goal to arg1, and
count is set to 0. Furthermore, the retrieval buffer is asked for a
declarative memory element that represents the successor of arg1.

Terminate-Addition. It can be applied if sum is not nil and arg2
and count have the same value i.e. count was arg2 times
incremented by 1. In that case count is set to nil. The previously
described initialize-addition production can not be applied after
that because sum is not nil. No other production can be applied
either thus the computation stops.

Increment-Sum matches if the goal’s slot sum is not nil, count is
not nil, and the retrieval buffer holds a fact about the successor of
sum. Once the production is executed, sum is set to the retrieved
successor and the retrieval buffer is asked for the successor’s
successor.

Increment-Count: This one can be applied if the goal’s slot sum
is not nil, count is not nil and the retrieval buffer holds a fact
about the successor of count. The application of this production
sets count to its successor and the retrieval buffer is asked for the
successor of sum.
Setting the goal to add the number five and two (second-goal ISA
add arg1 5 arg2 2)1 results in a sequence of instruction processing
as tabulated in Table 1. From this sequence one can see, that
model alternates between incrementing the count from 0 to 2 and
incrementing the sum from 5 to 7. Initialize–Addition starts things
going and requests a retrieval of an increment to the sum, i.e. the
successor. Increment-Sum processes that retrieval and requests a
retrieval of an increment to the count. That production fires
alternately with Increment-Count, which processes the retrieval of
the counter increment and requests a retrieval of an increment to
the sum. Terminate-Addition recognizes when the counter equals
the second argument of the addition and modifies the goal in a
way that no condition of any production can match. This is simply
done by setting count to nil. In consequence, the program stops.

Table 1. Sequence of Instruction Processing for the addition-
as-counting Example while adding five and two

Time [sec] Name of Production Fired
0.050 Initialize-Addition
0.150 Increment-Sum
0.250 Increment-Count
0.350 Increment-Sum
0.450 Increment-Count
0.500 Terminate-Addition
0.500 * Nothing to run: No productions, no events.

We use this introductory example as starter in our modeling
courses. Despite of its simplicity, it is our experience, that most of
our students have severe difficulties to predict the observed
instruction processing sequence from the user model code. In our
opinion the main barrier is the unfamiliarity with the production
system approach – most of our students do not have any artificial
intelligence background.
But, if we support them with a state graph, showing the states of
the goal buffer as edges and the productions as transitions (Figure
3), we can observe that the process of understanding is
significantly furthered. Up to now, no empirical sound study was
conducted, so it remains unclear if this is a transferable
observation that in fact can be attributed to the graphical support
(and not to the enthusiasm of the teacher about this didactical
tool).

1 The slots sum and count, which are referenced by the

productions, are initialized to nil by default

Figure 3. Program State Graph of the addition-as-counting
model of the ACT-R/PM Tutorial Unit 1. Nodes denote states
of the goal buffer, each edge stands for one production rule

and is labeled by the productions name, additional conditions
on other buffers and the modification on buffers

4. GENERALIZED STATES
The conflict resolution algorithm of ACT-R/PM checks all of the
buffer conditions – goal, memory, perception and motor system,
etc. Considering all of the combinations of conditions that are
described by the condition part of the set production would most
probably result in an explosion of the state space. Therefore some
reduction strategy is necessary. A natural choice is to reduce the
analysis on the goal buffer only. This is because the goal buffer is
of particular importance in ACT-R. The goal is normally used to
represent different stages of problem solving and plan execution
and to preserve problem specific data over the course of
production execution. A heavily used design pattern in ACT-R
user models is to enforce a particular sequence of productions by
manipulating the goal. If one production application should be
followed by another, the first production modifies the goal’s state
in its action part in a way that the second production is triggered
in the next production cycle.
In our implementation of the program state graph, nodes represent
goal states, which trigger certain production sets. Goal states are
relevant assignments of the current goal’s slots. Transitions
between states will be conducted by productions. At this point of
time, every production in the model is represented by exactly one
transition in the state chart.
To make the state chart more concise, we try to reduce the set of
possible assignments to goal conditions to generalized goal states.
This is accomplished by a unification process. This process seeks
to generalize the specification of the slots of a goal state. Slots
can be set to a certain value, to any value but a certain one, be
bound to no value or be bound to any value.

5. SUB GOALING
Sub-goaling and creation and handling of parallel goals are major
features of ACT-R/PM models. In the state chart visualization
every goal is treated as a super-state. The goal states and
transitions between them are represented as sub-states and
transitions between them. Goal creation and release is represented
as transitions between super-states (see Figure 9).

6. IMPLEMENTATION DETAILS
6.1 Goal State Generalization
The details of the algorithm are described in [10]. In this paper,
we concentrate on the central element of goal states
generalization. In particular in recursive models one might
observe, that the number of distinguishable states (without start
and stop states) might be less than the number of patterns found in
the condition and action parts of the production rule. This is
illustrated in Figure 4. The two production rules P1: S1 S2 and
P2: S3 S4 both operate on the same three-slot goal type. S1
and S3 are the condition patterns, S2 and S4 are action patterns
that will be applied on the goal element, whenever the related
production fires. Table 2 lists the condition and action patterns in
detail.

Table 2. Condition and Action patterns of goal state
generalization example

Production Goal Pattern Slot1 Slot2 Slot3
Condition: S1 A =var1 =var2 P1
Action: S2 =var3
Condition: S3 =var4 P2
Action: S4 nil

Within the context of the model, the goal states S2 and S3 can be
generalized by S1. That means that executing S2 does not change
the principal nature of the goal state and S3 matches whenever S1
matches. Given an initialization of the goal state that fills all of
the slots, one can easily derive the program state graph given in
figure 4.

Figure 4. Program state graph for the goal state

generalization example
The identification and generalization of goal states is
accomplished by means of the matching operator M. This
operator compares the condition part pattern of a production with
the current goal. The comparison process is not symmetric as the
current goal is guarantied to be more specific than any matching
condition part pattern. This means that for all productions that
match with the goal buffer the following is true: (1) the slots of
the condition part as well as the action part of the production that
refers to the goal pattern constitute a subset of the slots of the goal
buffer, and (2) the values of the production slots do match the
values of the goal buffer slots or can be unified.

This leads to the following formal definition of the matching
operator M [10]. Given the following data structures and relations

goal state S = (goal-type, slots)
slots = {sl | sl = (name, symbol)}
symbol = (type, value)
type ∈ { nil, var, const}
g : S → goal-type
s: S → slots
Symbol : sl → symbol
Value: symbol → value
Name: sl → name
Type: symbol → type

Let S1 and S2 be two goal states, then
S1 M S2 == true

iff
L1: g(S1) == g(S2) &&
L2: ∀ sl1 ∈ s(S1) ∃ sl2 ∈ s(S2) :
L3: Name(sl1) == Name(sl2) &&
L4: (Type(Symbol(sl1))==Type(Symbol(sl2)) == nil ||
L5: Type(Symbol(sl1)) == Type(Symbol(sl2)) == var ||
L6: (Type(Symbol(sl1)) == Type(Symbol(sl2)) == const
&&
L7: Value(Symbol(sl1)) == Value(Symbol(sl2))) ||
L8: (Type(Symbol(sl1)) == var &&
L9 : Type(Symbol(sl2)) == const))

Let’s put this formal description into words: Line 1 (L1) tells us,
that S1 and S2 may only match if they relate to the same goal-
type. (L2) If this is granted, then for every slot of S1 there must
be a matching slot in S2. Two slots match if both (L3) name and
(L4-L9) content of the slot match. The content of two slots match
if one of the following conditions is true: (L4) both are empty
(nil), (L5) both are to be bound (var), (L6-7) both refer to
constants with the same value or finally if (L8-9) slot 1 can be
bound and slot 2 refers to a constant.
If we now apply the match operator M on the goal states S1, S2,
S3 and S4 as given in figure 4 we will easily see, that S2 M S1 ==
true (L2, L5). However, S1 M S2 == false because (L2) fails.
Both conclusions are true for S1 and S3. Finally, S4 M S1 ==
false; nil and var do not match. This leads to the result, that S2
and S3 can be generalized to S1 while S4 is a distinct state. This
results in the graph as shown in figure 4.

6.2 Visualization
The program state graph is visualized using the graphical notation
of State Charts [8]. Figure 5 shows the basic elements: Boxes,
labeled with S and T represent two distinguishable states. The
arrow from S to T represents a state transition.

Figure 5. State Chart Notation for reactive systems. S,T are

states, E is the Event that triggers the transition, C a condition
that has to be fulfilled and A describes the Action taken

during transition

The label at the transition follows a certain format and contains
elements, which specify the transition. E denotes the event that
triggers the transition, C describes a condition that has to be true
for the transition to occur, and A is the action taken during
transition. This set of basic elements is completed by special
symbols for the initial state (filled circle) and the stop states
(filled circle with white border).
To apply this well-known schema to program state graph
visualization we modified it gently, as illustrated in Figure 3. The
nodes (boxes with round edges) are labeled with the description of
the slots of the generalized goal state they stand for. Each edge
represents a single production. Instead of event E we label the
edge with the name of the production. The tests on additional
buffers that are not part of the generalized goal state analysis, but
have to be fulfilled to allow the production to become part of the
conflict set, are noted as condition C. However, we chose to not
use brackets but to code this by color and an italic font type. The
same is true for the action part of the production. This naturally
maps to the action-element A of the state chart notation, once
again due to the expected amount of text we decided to utilize
color coding and a bold font type instead of the separating slash.

6.3 Implementation as Eclipse Plugin
We decided to implement the proposed algorithm and
visualization tool within the Eclipse environment. Eclipse is a
framework for custom integrated development environments. It
was explicitly designed to be extended. This is done by means of
plug-ins. A plug-in provides a new editor for a defined format.
The editor extends the internal list of known capabilities for the
defined file type and is activated by the user. In our case this is an
ACT-R model.
From a programmers point of view the editor implements a public
interface that defines the externally exposed functionality of all
editors. This common interface allows, to integrate the new plug-
in into the framework just as any other editor. The user won’t see
any difference, and indeed there is no difference, because
eclipse’s own editors are in fact plug-ins, too.
The plug-in for ACT-R/PM Model Visualization builds upon the
Graphical Editing Framework (GEF). GEF is a plug-in that builds
on different layers (Figure 6) and provides support for the
drawing of primitive figures like boxes, connecting lines, text
widgets, etc. Furthermore, GEF already implements some
interaction primitives like the dragging of elements, undo/redo
interfaces, etc.

Figure 6. The GEF Layered Architecture builds upon other
plug-ins of the Eclipse Framework and provides easy access to
the functionally of those layers [4]

GEF implements a model-view-controller design pattern. To
implement an editor, one has to provide three distinct packages.
The model package provides data representation classes for each
graphical element that should be displayed. The edit package
contains the implementation for handling the graphical elements
and the bend- and endpoints of each connection between
elements. Finally, the classes of the figure package implement
methods to display the graphical representations of all model
elements in the editor window. A well written application-
oriented documentation of the interfaces and functionality of the
different layers is given by [9].

Figure 9. A screen-shot of the editor with a model that
includes a sub-goal

7. CONCLUSION
The visualization for ACT-R user models has the potential to
become a supporting software engineering and modeling tool. In
particular it might be handy in the stage of implementing a formal
model that describes a rule-based sequence of actions into the
production paradigm of the cognitive architecture (Figure 9).

Problem
statement

Simulation
results

Conceptual
Model

Formal
Model

Computer
Model

Mathematical
modelling Implementation

Proof of
formalisation Program

verification

Conceptual
modelling

Proof of
concept

Experimentation

Verification of
Results

Plausibility
Check

Visualisation by

State-C
harts

Figure 9. Within the user modeling process the visualization
tool helps during implementation and program verification

Interaction Layer
Model - to - View

mappingWorkbench Integration

Rendering
Layout
Scaling

Native (SWT) Layer

Interaction Layer
Model-to-View mapping
Workbench Integration

Rendering
Layout
Scaling

Native (SWT) Layer

At this moment however, the tool is hardly more than a proof of
concept. It is used at our department to visualize the state
structure of user models and thus allows us to gain insight on the
control flow in complex cognitive models. On the top of the wish
list is an improved layout manager. Due to the simplicity of the
current implementations layout manager all models need to be
rearranged spatially. The second important limitation of the
current implementation is the scalability. It is not yet possible to
cluster visualization elements or to zoom out. Further
improvements will address these limitations: A more
sophisticated layout manager and support for exploring large
models is under construction.
The second direction of further development aims towards
support functions for model analysis. Since ACT-R/PM models
are internally represented as graphs it is possible to use simple
measures about the connectedness of sub-graphs to partition the
visualization in more or less independent clusters. Thus this tool
is a first step towards a visual programming and modeling
environment. A loose integration with the ACT-R/PM interpreter
could make it an integrated editing and simulation environment.
Applied cognitive modeling will become an important
engineering tool for analyzing and designing human-machine
systems. It will clearly benefit from any software engineering
support and more development tools like the visualization of
ACT-R/PM models that was presented in this paper. The
integration into a development environment would then make
modeling even more efficient. Due to its highly modular plug-in
concept the Eclipse framework would be a first choice candidate
as an integration platform.

8. ACKNOWLEDGMENTS
This work was funded by VolkswagenStiftung within the
Research Program “Junior Research Groups at German
Universities”. Our special thanks go to Prof. F. Wysotzki, TU
Berlin, for his lively interest and his support.

9. REFERENCES
[1] Amant, R. St., Horton, Th. E., and Ritter, F. E. (2004).

Model-based evaluation of cell phone menu interaction. In
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2004). Retrieved Feb 28, 2005,
from http://www.csc.ncsu.edu/faculty/stamant/papers/RSA-
TEH-FER-chi04-actr.pdf.

[2] Anderson, J. R., and Lebiere, C. (1998)(Eds.). Atomic
Components of Thought. Hillsdale, N.J.: Erlbaum.

[3] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, Ch., and Lebiere, Y. Q. (2004). An integrated
theory of the mind. Psychological Review 11(4). 1036-1060

[4] Bokowski, B. (2005) Maßgeschneiderte grafische Editoren
mit GEF[tailor-made graphical editors with GEF].

Presentation at JUGS, SIG Eclipse (Stuttgart, 3.2005).
Retrieved Jun 5, 2005 from
http://www.eclipseteam.de/wiki/pub/Public/EclipseGef/GEF-
JUGS.ppt

[5] Byrne, M. D. (2001) ACT-R/PM and menu selection:
applying a cognitive architecture to HCI. Int. J. Human-
Computer Studies (2001) 55, 41-84

[6] Byrne, M. D., and Anderson, J. R. (1998). Perception and
Action. In J. R. Anderson, & Ch. Lebiere (Hrsg.) Atomic
Components of Thought. Mahwah, NJ: Erlbaum. 167-200

[7] Cooper, R. P. (2002). Modelling High-Level Cognitive
Processes. Mahwah, NJ: Lawrence Erlbaum Associates.

[8] Harel, D. (1987). Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming, 8(3),
231-274.

[9] Moore, B., Dean, D., Gerber, A., Wagenknecht, G., &
Vanderheyden, Ph. (2004). Eclipse Development using the
Graphical Editing Framework and the Eclipse Modeling
Framework. IBM (Redbooks). Retrieved Jun, 5 2005 from
http://www.redbooks.ibm.com/redbooks/pdfs/sg246302.pdf

[10] Nekrasova, L. (2005) Programmvisualisierung von
Produktionssystemen am Beispiel der kognitiven
Modellierungssprache ACT-R [Program Visualization of
production systems, exemplified with the cognitive
architecture ACT-R]. Master Thesis. TU Berlin, Center of
Human-Machine Systems.

[11] Niessen, C., Leuchter, S., and Eyferth, K. (1998). A
psychological model of air traffic control and its
implementation. In Proceedings of the Second European
Conference on Cognitive Modelling (ECCM-98).
Nottingham: Nottingham University Press. 104-111
Retrieved Feb 28, 2005 from http://www.zmms.tu-
berlin.de/~sandro/doc/eccm98.pdf.

[12] Salvucci, D. D. (2001). Predicting the effects of in-car
interface use on driver performance: an integrated model
approach. International Journal of Human-Computer
Studies, 55(1), 85-107.

[13] Schoppek, W., and Boehm-Davis, D. A. (2004).
Opportunities and challenges of modeling user behavior in
complex real world tasks. MMI interaktiv, 7, 47-60.
Retrieved Feb 28, 2005, from
http://useworld.net/ausgaben/06-2004/05-Schoppek_Boehm-
Davis.pdf.

[14] Wallach, D. (1996). Komplexe Regelungsprozesse: Eine
kognitionswissenschaftliche Analyse [complex control
processes: a cognitive science analysis]. Wiesbaden: DUV.

