In Proceedings of ICCM - 2006- Seventh International Conference on Cognitive Modeling. 404-407. Trieste, Italy: Edizioni

Goliardiche.

High-level Behavior Representation Languages Revisited

Frank E. Ritter, Steven R. Haynes, and Mark Cohen (ritter, shaynes, mcohen@ist.psu.edu)

Andrew Howes (HowesA @manchester.ac.uk)

Bonnie John (bonnie.john@gmail.com)

Brad Best (bbest@maad.com) and Christian Lebiere (clebiere@maad.com)

Randolph M. Jones (rjones@soartech.com) and Jacob Crossman (jcrossman@soartech.com)

Richard L. Lewis (rickl@umich.edu)

Robert St. Amant (stamant@csc.ncsu.edu) and Sean P. McBride (sean.patrick.mcbride@ gmail.com)

Leon Urbas (leon.urbas@zmms.tu-berlin.de) and Sandro Leuchter (sandro.leuchter@iitb.fraunhofer.de)

Alonso Vera (avera@mail.arc.nasa.gov)

Introduction

There has only been a short history of high level
languages to model human cognition based on cognitive
architectures. TAQL is an early example (Yost, 1993).
TAQL showed a large (3x) speed increase over plain Soar,
but because it did not support Soar’s learning mechanism
and because Soar changed soon after its release, TAQL’s
impact was not as great as its developer probably would
have liked.

It is time again to consider high level behavior
representation languages. Cognitive models and intelligent
agents are becoming more complex and pervasive. This is
driving the need for development environments that make
it easier to create, share, and reuse cognitive models.
Several high level modeling languages have recently been
created and several of them are described briefly here.
These languages are each different, but they have a
common goal of making modeling human data easier to
perform. We can now see some generalities and common
lessons. By holding this symposium we will identify
lessons for the development of these languages as well as
for their users. These languages are reviewed briefly in
the next section.

Example high-level languages

agimap

agimap (Urbas & Leuchter, 2005) is a tool chain
approach that makes cognitive modelling of operator
performance in dynamic systems more effective and
efficient. agimap was designed for experienced modellers
who want to get rid of writing and debugging again and
again those parts of the user model that describe behaviour
at the interaction level. In contrast to compiler-like-
approaches like ACT-Simple (Salvucci & Lee, 2003) or
G2A (St. Amant, Freed, & Ritter, 2005). agimap does
not leave the modeller with another modelling language
but provides an integrated chain of tools that derives the
target code from a high-level XML representation of
different aspects of the GUI’s elements. The chain consists

of five distinct components, most of the inner ones not
visible to the end user, including: (a) a GUI editor, (b) a
GUI description to target architecture compiler, (c) a
cognitive architecture / physical world communication
layer, (d) a system state to internal GUI representation
mapper, and (¢) an extendable library of part-task user
models to achieve sub-goals at the interaction layer like
scanning a set of instruments, reading and monitoring a
single instrument, or clicking a single button. Currently,
the tool-chain supports part task model creation for ACT-
R’s perceptual-motor subsystem and its AGI interface. To
port agimap to other cognitive architectures, all but the
editor component would need to be adapted to the syntax
of the target architecture.

To derive a new model, one has to describe the parts of
the GUI that are important for the task at hand. For
simple GUIs this can be done manually with the GUI
Editor that is part of agimap. This results in a model of
the human-machine interface coded in XML. For complex
GUIs with hundreds of elements per screen (as often found
in the domain of process control) it might be reasonable
to semi-automate this step. XSLT is then used to
transform this XML-representation of the GUI elements to
a proper representation for the target cognitive
architecture. The transformation generates code for the
agimap run-time components (b and ¢ in the component
listing above), as well as a representation of the expert
users’ interface knowledge that would develop during
interaction.

The next step is to integrate the appropriate interaction
sub-task models with the overall cognitive task model.
This might be as simple as “calling” a sub-goal. To get
this overall task model right is still the hardest part of
user modelling in dynamic systems. However, because
the amount of agimap generated code can take up to 50%
of the complete user model, agimap helps to concentrate
on the essential modelling task.

G2A

G2A (St. Amant et al., 2005) produces ACT-R models
from GOMS model descriptions. The GOMS models can

28 feb 2006

contain hierarchical methods, visual and memory stores,
and control constructs. G2A allows ACT-R models to be
built much more quickly. The data point we have is that
it takes an experienced GOMS modeler under an hour to
create a dialing model that took an experienced computer
scientist graduate student about 50 hours to write in ACT-
R (St. Amant et al., 2005). Because GOMS is a more
abstract formalism than ACT-R, most GOMS operators
can be translated in different ways into ACT-R
productions (e.g., a GOMS Look-for operator can be
carried out by different visual search strategies in ACT-R).

G2A generates and evaluates alternative ACT-R models
by systematically varying the mapping of GOMS
operators to ACT-R productions. In experiments with a
text-editing task, G2A produced ACT-R models whose
predictions are within 5% of the GOMS model
predictions. In the same domain, G2A also generates
ACT-R models that give better predictions than GOMS,
providing good predictions of overall task duration for
actual users (within 2%), though the models are less
accurate at a detailed level. In a separate experiment with
a mouse-driven telephone dialing task, G2A produced
models that do a better job of distinguishing between
competing interfaces than a Fitts law model or an ACT-R
model built by hand.

G2A shows a way forward for cognitive models, that of
higher level languages that compile into more detailed
specifications. Continuing work on G2A aims at the
development of an internal task representation to support
translation to other modeling formalisms.

CogTool

CogTool is a tool designed for user interface (UI)
designers who have no knowledge or experience in
cognitive modeling or programming (John, Prevas,
Salvucci, & Koedinger, 2004). By creating an interactive
storyboard of a proposed design, then demonstrating tasks
on that storyboard, UI designers can obtain predictions of
skilled performance time. CogTool combines the theory
of the Keystroke-Level Model (KLM, Card, Moran, &
Newell, 1980) with a modified ACT-Simple compiler
(Salvucci & Lee, 2003) to automatically produce an ACT-
R model that is more accurate with respect to user data
than previously published KLM results. In addition, the
total time to introduce a user to cognitive modeling, train
her on CogTool, construct four models, and get execution
time predictions was less than half an hour, whereas other
novice modelers with far more training took far more time
to attain far less accurate predictions with the original
KLM and writing ACT-Simple. Furthermore, a modeler
skilled in the use of CogTool took an order of magnitude
less time to obtain predictions than an ACT-Simple
modeler. Recent improvements in the user interface of
CogTool decrease this time by an additional 30%.

Unlike the other systems described in this symposium,
CogTool does not present a traditional language to the
user. In fact, CogTool’s philosophy, based on user
research, is that its target users, UI designers, will not be
willing to use anything that looks like a programming
language. Thus, CogTool’s “language” is visual and

interactive, not something to be typed into a computer.
The structure of storyboards is constrained by the
CogTool design and frame editors, being translated into
the language that defines a device “under the hood” and
hidden from the user. Likewise, the modeling “language”
that the UI designer sees is comprised of demonstrating
steps on the storyboard, which is translated into ACT-
R/PM commands. CogTool’s capturing of storyboards and
demonstrations, however, is generic enough to be
translated into many cognitive architectures and is
available for other architectures to use. A current effort is
to make the CogTool front end connect to IRG. We will
discuss the limitations of the current CogTool’s
expressiveness and plans for future expansion.

Herbal

The Herbal tool set (Cohen, Ritter, & Haynes, 2005)
consists of the Herbal high-level behavior representation
language, its integrated development environment (IDE),
and the Herbal Viewer, which provides explanations of
intelligent agent purpose, structure, and behavior. Herbal
contributes to this goal by structuring the programming
process through the use of explicit class ontology.
Although the Herbal tool set does allow designers to
create models by directly programming in the Herbal high-
level language, the Herbal IDE makes it possible for the
designer to interact with this language visually. Like
CogTool, the Herbal IDE reduces the learning required by
making it a visual task, yet appears to not reduce
expressivity, both of which are important.

Another important goal of the Herbal high-level
language is to create models that can explain themselves.
Herbal contributes to this goal by structuring the
programming process through the use of explicit class
ontology. The ontology contains classes that represent
important Soar model components including: states,
operators, elaborations, impasses, conditions, actions, and
working memory, all as first-class model objects. The
explanation patterns are based on a study of what
questions users ask of models (Councill, Haynes, &
Ritter, 2003).

Herbal has been used by approximately 40 tutees at the
BRIMS conference (Ritter, Morgan, Stevenson, & Cohen,
2005) and by 40 undergraduates at Penn State, where we
found a 3x speed up in a simple controlled experiment
(Morgan, Cohen, Haynes, & Ritter, 2005). Herbal
provides about a 8x code expansion.

Though Herbal is currently designed to produce Soar
agents, we intend to continue development of the
environment so that it is capable of producing both ACT-
R and Jess agents. This multi-platform capability will
facilitate sharing design knowledge across three of the
largest intelligent systems development communities.

HLSR

HLSR is a High Level Symbolic Representation
language for the development of cognitive models and
intelligent agents (Jones, Crossman, Lebiere, & Best,
2006). Our work is in the spirit of past research into

17 apr 2006

cognitive architectures, which provide functional
components and data representations for the primary
purpose of modeling human behavior. Each cognitive
architecture essentially defines an abstract machine
together with a language for programming that machine.
However, until recently, there has been little effort to
identify in a formal way the commonalities across
existing cognitive architectures, which would also make it
more clear which architectural differences are important
from a theoretical point of view (although, see Cooper,
Fox, Farringdon, & Shallice, 1996).

Our experience has shown that there are important
fundamental and theoretical differences between the most
prominent cognitive architectures. At the same time,
however, much of the work involved in building specific
cognitive models is the same no matter which architecture
one is using. This is particularly true for defining high-
level knowledge representations, building a structured task
analysis, and implementing this with a somewhat standard
sense-retrieve-act decision cycle. Part of the intent of this
research is to make it feasible for these common modeling
activities to be accomplished within a common framework
and formal language. This should make it easier to build
and maintain models, to explore model variations within a
particular cognitive architecture, and to compare models
usefully across architectures.

To this end, HLSR defines an abstract formal
programming language for cognitive modeling that
attempts to generalize the common structures and
processes found in existing cognitive architectures. Our
approach has been to combine a high-level overview and
analysis of a number of architectures for cognition and
intelligent agents together with a fine-grained analysis of
two of the most prominent cognitive architectures. Our
current work involves developing a language and
compilers to specify high-level cognitive models and
translate them into executable ACT-R and Soar models.
This has required us to be extremely careful about
managing the theoretical differences and assumptions
behind ACT-R and Soar, and generalizing those into a
useful abstract framework that can be represented in a
formal, high-level language. An additional benefit of this
approach is a formalization of common modeling patterns
in those architectures and an examination of their practical
implications beyond ad hoc modeling practice.

IRG

IRG is motivated by the observation (Howes, Lewis,
Vera, & Richardson, 2005; Lewis, Vera, & Howes, 2004;
Vera, Howes, McCurdy, & Lewis, 2004) that existing
languages for representing routine cognitive tasks (such as
GOMS, UAN, and PDL) can fail either because they
demand that task competence is described using serial
position to determine temporal order (and they are
therefore overly restrictive) or because they demand that
partial orderings are specified with temporal dependencies
and other logical relationships (and they are therefore
under-constrained). Howes et al. (2005) propose a novel
task description language, called Information-
Requirements Grammar (IRG), which is consistent with a

theory of how higher-level task performance is constrained
by the information requirements and resource demands of
lower-level tasks. We have (Howes et al., 2005; Eng et
al., 2006) have demonstrated the use of IRG and show
how it replaces serial ordering and temporal dependencies
with resource-bound information cascades between
architectural information processes.

For example, a GOMS method, or any of its
derivatives, for verbally requesting a postcode and entering
into a database field imposes an ordered sequence:

GOMS: Enter postcode -->
Step 1: request postcode,
Step 2: listen for postcode,
Step 3: select postcode field,
Step 4: type postcode.

In contrast, IRG allows specification of information
requirements in capitalized parameters to each subtask.
The RHS subtasks are not ordered by position but are
constraint by information needs. Therefore the select task
can proceed in parallel with the request and listen tasks.
The type task must wait for all three to complete.

IRG: enter postcode -->
request postcode to give CODE,

listen for CODE to give
CODE_REPRESENTATION,

select postcode field to give
SELECTED_FIELD,

type CODE_REPRESENTATION into

SELECTED FIELD.
The above method is not pseudo-code. It is the form that
is used. Large hierarchical grammars can be specified in
this fashion.

Discussion and Conclusions

Several high level modeling languages now exist. They
are increasingly usable and are able to create models
validated by data. They will soon be invaluable modeling
and theorizing tools. They now need to be introduced to a
wider audience, and with increased use have their
development accelerated.

These tools will be increasingly important for
modelers—creating models quickly. They will make
theories in this area more mutable, maintainable, and
creatable. For modeling to become more important in
psychology, models will have to become easier to use.
This symposium helps disseminate good work in this
area, and should help more modelers help develop higher
level languages, as well as find higher level languages for
their own use.

There remain important open problems and questions
about these languages. These questions include:

* What are the research goals of these systems? Are
they languages, modeling tools, or both?

* What cognitive architecture(s) are the system built
upon? What architectures are easy to use in this
way? How do the tools influence the architecture?

17 apr 2006

* What does the high-level langue look like? (What’s
it like to use?) Is it faster or more enjoyable, or
both, or neither?

* How many models have been built, and how many
users have used it? How mature is the language?

* What is the largest model built so far? Does the
language scale well?

* Is there any evidence for the predictions of the
models the high-level language creates? Are the
models produced accurate?

e Is there any evidence for the tool’s usability? How
do we know the tool is usable outside the lab that
developed it?

* What constraints does the language impose on
adaptation and learning? More broadly, what types
of behavior does the language support modeling?

Acknowledgements and Author Affiliations

Frank E. Ritter, Steven R. Haynes, and Mark Cohen are
at the College of IST, The Pennsylvania State University.
Their support was provided by ONR N00014-06-1-0164.
Andrew Howes is at the School of Informatics, The
University of Manchester. Bonnie John is at the Human-
Computer Interaction Institute, Carnegie = Mellon
University. Brad Best and Christian Lebiere are at MAAD.
Randolph M. Jones and Jacob Crossman are at Soar
Technology. Richard L. Lewis is at the Department of
Psychology, University of Michigan. Robert St. Amant
and Sean McBride are at the Department of Computer
Science, North Carolina State University, and are
supported by the National Science Foundation under award
ITR-0426852. Leon Urbas is at the Center of Human-
Machine Systems, Technical University Berlin. Sandro
Leuchter is at the Fraunhofer Institute for Information and
Data Processing. Alonso Vera is at Carnegie Mellon
University and NASA Ames Research Center.

References

Card, S. K., Moran, T. P., & Newell, A. (1980). The
keystroke-level model for user performance time with
interactive systems. Communications of the ACM,
23(7), 396-410.

Cohen, M. A, Ritter, F. E., & Haynes, S. R. (2005).
Herbal: A high-level language and development
environment for developing cognitive models in Soar.
In Proceedings of the 14th Conference on Behavior
Representation in Modeling and Simulation, 133-140.
105-BRIMS-043. Orlando, FL: U. of Central Florida.

Cooper, R., Fox, J., Farringdon, J., & Shallice, T.
(1996). A systematic methodology for cognitive
modelling. Artificial Intelligence, 85, 3-44.

Councill, I. G., Haynes, S. R., & Ritter, F. E. (2003).
Explaining Soar: Analysis of existing tools and user
information requirements. In Proceedings of the Fifth
International Conference on Cognitive Modeling, 63-
68. Bamberg, Germany: Universitits-Verlag Bamberg.

Eng, K., Lewis, R. L., Tollinger, 1., Chu, A., Howes,
A., & Vera, A. (2006). Generating automated
predictions of behavior strategically adapted to specific

performance objectives. In Proceedings of ACM
Conference on Human Factors in Computing Systems,
CHI'06. New York, NY: ACM.

Howes, A., Lewis, R. L., Vera, A., & Richardson, J.
(2005). Information-Requirements Grammar: A theory
of the structure of competence for interaction. In
Proceedings of the 27th Annual Meeting of the
Cognitive Science Society, 977-983. Hillsdale, NJ:
Lawrence Erlbaum.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger,
K. (2004). Predictive human performance modeling
made easy. In Proceedings of CHI 2004 (Vienna,
Austria, April 2004), 455-462. New York, NY: ACM.

Jones, R. M., Crossman, J. A. L., Lebiere, C., & Best,
B. J. (2006). An abstract language for cognitive
modeling. In Proceedings of the 7th ICCM. Mahwabh,
NIJ: Lawrence Erlbaum.

Lewis, R. L., Vera, A. H., & Howes, A. H. (2004). A
constraint-based approach to understanding the
composition of skill. In Proceedings of the Sixth
International Conference on Cognitive Modeling, 148-
153. Mahwah, NJ: Lawrence Erlbaum.

Morgan, G. P., Cohen, M. A., Haynes, S. R., & Ritter,
F. E. (2005). Increasing efficiency of the development
of user models. In Proceedings of the IEEE System
Information and Engineering Design Symposium.

Ritter, F. E., Morgan, G. P., Stevenson, W. E., &
Cohen, M. A. (2005). A tutorial on Herbal: A high-
level language and development environment based on
Protégé for developing cognitive models in Soar. In
Proceedings of the 14th Conference on Behavior
Representation in Modeling and Simulation. Orlando,
FL: U. of Central Florida.

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In
Human Factors in Computing Systems: CHI 2003
Conference Proceedings, 265-272. New York, NY:
ACM.

St. Amant, R., Freed, A. R., & Ritter, F. E. (2005).
Specifying ACT-R models of user interaction with a
GOMS language. Cognitive Systems Research, 6(1),
71-88.

Urbas, L., & Leuchter, S. (2005). Model based analysis
and design of human-machine dialogues through
displays. KI — Zeitschrift fiir kiinstliche Intelligenz [Al-
Journal for Al], 45-51.

Vera, A., Howes, A., McCurdy, M., & Lewis, R. L.
(2004). A constraint satisfaction approach to predicting
skilled interactive performance. In Proceedings of CHI
2004, 121-128. ACM Press: New York, NY.

Yost, G. R. (1993). Acquiring knowledge in Soar. IEEE
Expert, 8(3), 26-34.

17 apr 2006

